
LA-UR-16-22370
Approved for public release; distribution is unlimited.

Title: Charliecloud: Unprivileged containers for user-defined software stacks
in HPC

Author(s): Priedhorsky, Reid
Randles, Timothy C.

Intended for: Supercomputing 2017, 2017-11-12/2017-11-17 (Denver, Colorado, United
States)
Report
Web

Issued: 2017-08-10 (rev.3)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Charliecloud: Unprivileged containers
for user-defined software stacks in HPC

Technical report LA-UR 16-22370v4, August 2017∗

Reid Priedhorsky and Tim Randles
{reidpr,trandles}@lanl.gov
Los Alamos National Laboratory

High Performance Computing Division
Los Alamos, NM, USA

ABSTRACT
Supercomputing centers are seeing increasing demand for user-
defined software stacks (UDSS), instead of or in addition to the stack
provided by the center. These UDSS support user needs such as
complex dependencies or build requirements, externally required
configurations, portability, and consistency. The challenge for cen-
ters is to provide these services in a usable manner while minimiz-
ing the risks: security, support burden, missing functionality, and
performance. We present Charliecloud, which uses the Linux user
and mount namespaces to run industry-standard Docker contain-
ers with no privileged operations or daemons on center resources.
Our simple approach avoids most security risks while maintain-
ing access to the performance and functionality already on offer,
doing so in just 800 lines of code. Charliecloud promises to bring
an industry-standard UDSS user workflow to existing, minimally
altered HPC resources.

1 INTRODUCTION
HPC users have always been asking for more, better, and different
software environments to support their scientific codes. “Bring
your own software stack” functionality, which we call user-defined
software stacks (UDSS),1 is motivated by user needs such as:
(N1) Software dependencies that are numerous, complex, unusual,

differently configured, or simply newer or older than what
is already provided.

(N2) Build-time requirements unavailable within the center, such
as relatively unfettered internet access.

(N3) Validated software stacks and configuration to meet the stan-
dards of a particular field of inquiry.

(N4) Portability of environments between resources, including
workstations and other test/development systems not man-
aged by the center.

(N5) Consistent environments that can be easily, reliably, and veri-
fiably reproduced in the future.

(N6) Usability and comprehensibility.
A further motivation is that HPC users see the exciting things

happening in the outside world and want similar functionality. In
our case, this is public compute clouds such as Amazon’s AWS,2

∗This report is a pre-print of our Supercomputing 2017 paper with the same title, which
is the canonical version: https://doi.org/10.1145/3126908.3126925.
1No consensus vocabulary for this or related concepts exists. Alternate terms areflexible
stacks, flexible environments, user-defined environments, and user-defined images, and
others.
2https://aws.amazon.com

Google’s Compute Engine,3 andMicrosoft’s Azure,4 as well as open-
source image and container management tools such as Docker.5

Complicating the matter are several potential drawbacks and
difficulties of UDSS:

(D1) Security risks. By introducing very flexible new features,
UDSS can expand a center’s attack surface.

(D2) Support burden. Again due to sharply increased flexibility,
UDSS may increase the cost of system configuration and/or
user support.

(D3) Missing functionality. Because a UDSS is by definition sepa-
rated from the native software stack, implementations can
limit features such as accelerator hardware, filesystems, and
high-speed interconnects. This is important because it is
these high-end features that make supercomputing centers,
as opposed to business data centers, interesting and special.

(D4) Performance penalty. UDSS implementations can introduce
various type of overhead that negatively impact performance.

These motivations and potential pitfalls suggest three design
goals for an HPC-focused UDSS implementation:

(G1) Provide a standard, inter-operable, and reproducible work-
flow. (all N, D2)

(G2) Run on existing, minimally modified HPC hardware and
software resources. (all D)

(G3) Be very simple. (N6, D1, D2)

In this paper, we introduce Charliecloud, a UDSS implementation
targeted at these design goals. Charliecloud provides an industry-
standard, reproducible workflow based on Docker, and its user
namespace-based implementation eliminates the need for privi-
leged or trusted operations on any center-managed resources.6 It
is a simple, open-source7 implementation of roughly 500 lines of C
and 300 lines of shell code.

The remainder of this paper is organized as follows. First, we
outline how Linux containers work and their relationship with the
UDSS concept. Next, we describe Charliecloud and how it meets the
design goals, followed by a comparison to other products. We close
with the implications of Charliecloud and possible future work.

3https://cloud.google.com/compute/
4https://azure.microsoft.com
5https://www.docker.com
6A setuid mode that does not require user namespaces is also provided, to allow testing
on systems that do not support them.
7https://github.com/hpc/charliecloud

1

https://doi.org/10.1145/3126908.3126925
https://aws.amazon.com
https://cloud.google.com/compute/
https://azure.microsoft.com
https://www.docker.com
https://github.com/hpc/charliecloud

LA-UR 16-22370v4 Reid Priedhorsky and Tim Randles

2 LINUX CONTAINERS OVERVIEW
In this section, we briefly review Linux containers and key related
concepts upon which Charliecloud is built. We do so in part for
clarity: container is a widely used term with varying definitions,
so this section outlines precisely the assumptions our argument
depends on.

2.1 Privileged Linux namespaces
Linux has six namespaces that isolate different classes of kernel
resources; a process and its children see a set of these resources
independent from other processes [16, 21]. Five are what we call
privileged namespaces, requiring root privileges to create; the sixth,
unprivileged namespace is covered in the next section. The privi-
leged namespaces are:

(1) mount: Filesystem tree and mounts.
(2) PID: Process IDs. A process inside a PID namespace has

different PIDs depending on whether it is being viewed from
inside or outside the namespace.

(3) UTS: Host name and domain name. (The name derives from
“UNIX Time-sharing System”.)

(4) network: All other network-related resources, including net-
work devices, ports, routing tables, and firewall rules.

(5) IPC: Inter-process communication resources, both System V
and POSIX.

The six namespaces can be mixed and matched, but there are
quirks.8 For example, a mount namespace cannot create a new /sys
unless it is also a network namespace, because /sys includes files
that can be used to manipulate the network configuration.

Namespaces are always active, i.e., all Linux processes have
namespace IDs for all six namespaces,9 and they can be nested.
Everything is owned by a namespace. For example, though it cannot
create its own, a mount namespace can bind-mount its parent’s
/sys, to which the parent namespace controls access.

They are manipulated by three system calls. unshare(2) creates
and joins new namespaces [23], clone(2) creates a child process
and can put it in new namespaces (the caller’s namespaces are
unchanged) [20], and setns(2) joins an existing namespace [22].

These features are useful for UDSS because they allow a guest
filesystem tree installed in a directory of the host to become the
root of a mount namespace, and the other namespaces can be used
for additional isolation as needed.

2.2 Unprivileged namespaces
The sixth namespace, user, was added in Linux 3.8 and the follow-
ing few releases. Its goal is to give unprivileged processes access
to traditionally privileged functionality in specific contexts when
doing so is safe [17, 24].

The first process in a new user namespace has all capabilities in
the new namespace, but none in the parent user namespace, even
if created by root. Thus, processes and kernel resources inside the
user namespace can be manipulated arbitrarily, but only in ways

8Many of these quirks are not documented and must be explained elsewhere, often the
Linux source code itself. All quirks we encountered are documented in the Charliecloud
source code
9Try ls -l /proc/self/ns.

#define _GNU_SOURCE
#include <fcntl.h>
#include <sched.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

uid_t euid = geteuid ();
int fd;

printf (" outside userns , uid=%d\n", euid);

unshare(CLONE_NEWUSER);
fd = open ("/ proc/self/uid_map", O_WRONLY);
dprintf(fd, "0 %d 1\n", euid);
close(fd);
printf ("in userns , uid=%d\n", geteuid ());

execlp ("/bin/bash", "bash", NULL);
}

Figure 1: Hello world implementation of a user names-
pace, available as examples/syscalls/userns.c in the Char-
liecloud source code. This program creates the namespace
with unshare(2), maps within-namespace UID 0 to the in-
voking user’s EUID by writing uid_map, and then starts the
world’s most useless root shell.

that do not affect the parent namespace (i.e, the host) — privilege is
an illusion.

Another key component of user namespaces is the UID and GID
mappings. Part of creating a user namespace is to define a one-to-
one mapping between UIDs and GIDs in the parent namespace and
the new child user namespace. (The procedure is the same for both,
so we omit discussion of GID mapping for brevity.) A common use
is to map one’s normal, unprivileged UID to 0 inside the namespace,
thus appearing to be root.

For unprivileged users, these maps are not arbitrary: unprivi-
leged processes may map only their EUID. This limits access to
things already accessible, because while any UID can be selected
in the user namespace, it must map to the user’s existing host UID.
Also, all access using unmapped UIDs will be rejected. For example,
setuid(2) cannot be used to access another user’s files, because
the other user’s UID grants no access if unmapped and cannot be
set on the host side of the map.

This mapping is used to translate UIDs in both directions. When
a UID-based access decision is initiated inside the namespace, the
map translates the child namespace UID to its corresponding par-
ent namespace UID, and the latter is used for access control. For
example, bind-mounting any directory into the container is safe,
because it is the user’s real, unprivileged IDs on the host, not the
fictional ones in the user namespace, that control access. In the
opposite direction, for example, files owned by the user will be
translated from the user’s real UID to the in-container UID. Thus,
with the mapping to UID 0 described above, all of a user’s files will
appear to be owned by root when listed inside the namespace.

2

Charliecloud: Unprivileged containers for UDSS in HPC LA-UR 16-22370v4

Figure 1 illustrates a hello-world user namespace implementa-
tion. This is an unprivileged, untrusted, non-setuid program; given
kernel support, any user can run it, or the more complete imple-
mentation in Charliecloud, with no sysadmin assistance.

User namespaces are a powerful tool for implementing container-
based UDSS tools because they let a normal, unprivileged user cre-
ate an independent filesystem tree and safely access host resources,
even if they hold “privileges” inside the container.

2.3 cgroups
Linux cgroups are a mechanism for limiting resource consumption
of processes [33]. This is most useful in a multi-tenant setting, i.e.,
multiple users running jobs on the same node. In a single-tenant
setting, excess resource consumption will adversely affect only the
original user.

There are further reasons why cgroups might be desirable in
HPC. For example, CPU pinning can help performance and make
NUMA behavior deterministic. However, cgroups can be applied to
any process; we consider them orthogonal to containers.

2.4 Vocabulary
With the key concepts explained, we now list the vocabulary used
in this paper.

A user-defined software stack (UDSS) is a software environment
provided by a user to support their HPC code(s). Typically, this
environment is reasonably complex, i.e., more than a library or
three. The acronym UDSS is both singular and plural.

An image embodies a UDSS. It can be a tarball, a directory tree,
a filesystem image, or something else. Images can be activated or
run, but UDSS cannot.

Host refers either to a physical node or the bare-metal operating
system running on it.

A guest is a subordinate OS running on a host with some mecha-
nism for isolation from that host. This term is most commonly used
in the context of virtual machines, but we use it in a technology-
agnostic way. Activating an image doesn’t necessarily require a
guest, e.g. with LD_LIBRARY_PATH, but running an image does. Note
that guest does not refer to the virtual machine emulator or hyper-
visor itself.

A container is a guest-host embodiment that uses kernel isola-
tion mechanisms, e.g. as opposed to a virtual machine, which uses
emulated hardware. That is, guests share the host’s kernel but have
an independent filesystem root; other kernel resources may or may
not be shared. The isolation is irreversible, even by root, in contrast
with chroot(2) [36].

In the case of Linux, containerization requires the mount names-
pace. The other five are optional, as are cgroups.

2.5 Charliecloud containers
A key design goal of Charliecloud is simplicity (G3). This invokes
the principle of least privilege [35] and the UNIX philosophy to
“make each program do one thing well” [28].

Under this guidance, Charliecloud keeps all processes on center-
owned resources unprivileged, leveraging user namespaces to ac-
cess a few important system calls. Thus, isolation becomes a tool
for functionality, to let users run their codes, rather than a security

boundary. Adding the mount namespace lets users provide their
UDSS, completing the picture.

This approach contrasts with other container implementations,
which run UDSS with a great number of features, options, indirec-
tions, security boundaries, and lines of code. We argue that this is
unnecessary and needlessly complicates the issue. Running a UDSS
is straightforward, not heroic.

With respect to the other options outlined above:
• cgroups are not needed because Charliecloud is agnostic to
single- vs. multi-tenant policy. These needs are no different
from non-container jobs and are managed orthogonally with
separate tools.

• The PID namespace is not needed because we do not need to
hide host processes from the UDSS. It also has a key quirk:
unlike the other namespaces, unshare(2) does not enter the
new PID namespace; instead, a subsequent fork(2) creates
PID 1 in the new namespace, and further fork(2)s fail with
EPERM [18]. Thus, the fork(2) + exec(2) model must be
used, instead of the simpler exec(2)model, and a supervisor
process is needed to proxy signals.

• Instead of the UTS and network namespaces, Charliecloud
relies directly on the host network stack. In addition to avoid-
ing indirection that increases complexity and can reduce per-
formance, this has had specific security impact: Charliecloud
was not vulnerable to a recent privilege escalation involving
combined network and user namespaces [9].

• The IPC namespace is also not used, which lets different
containers and the host communicate using shared memory.
This simplifies many workflows.

In the rest of the paper, we argue that this simple approach is
the best way to meet the proposed design goals.

3 CHARLIECLOUD AND THE DESIGN GOALS
Charliecloud is a lightweight, open-source UDSS implementation
based on the Linux user namespace and targeted to the design goals
outlined above. It uses Docker to build a UDSS image, shell scripts
to unpack the image to an appropriate location, and a C program to
activate the image and run user code within. Selected host directo-
ries and files are bind-mounted into the running image to provide
access to existing functionality.

This section describes how Charliecloud meets the design goals
introduced above.

3.1 Standard, reproducible workflow (G1)
Here, we describe the Charliecloud workflow, using an MPI10 “hello
world” program.11 It is presented in full in order to demonstrate
the simplicity of the Charliecloud model.

We selected Docker for image building because it is an industry
standard and because it provides a well-defined, reproducible pro-
cedure for defining, composing, and sharing12 images. However,
we found Docker’s security posture and complexity undesirable

10We choseMPI for this exposition due to its familiarity among theHPC target audience.
Because it is already dominant in HPC, however, we expect that actual demand for
MPI UDSS will modest compared to more esoteric frameworks.
11Available at examples/mpihello in the Charliecloud source code.
12For example, via Docker Hub: https://hub.docker.com

3

https://hub.docker.com

LA-UR 16-22370v4 Reid Priedhorsky and Tim Randles

for running images, using instead a simple C wrapper we wrote
ourselves.

While running the Docker daemon and executing Docker com-
mands require privileged access, this happens on user-managed
resources; nothing in the Charliecloud workflow requires privileged
or trusted processes or daemons on center-managed resources. All
privileged steps take place on user systems, and the scripts escalate
with sudo as needed.

Leveraging Docker in this way enables participation in its larger
image ecosystem. While the example below builds a custom image,
one could instead use a pre-built one obtained with docker pull.
Similarly, images once built can be shared with docker push.

We tested this workflow with OpenMPI 1.10.5 on Debian Stretch
with vendor kernel 4.9, RHEL 7 with upstream kernel 4.4, and other
distributions and versions.

3.1.1 Define UDSS. (Unprivileged; user-managed system.) The
first step in the workflow is to write a Dockerfile that defines the
necessary environment; this is illustrated in Figure 2. Any guest
Linux distribution compatible with the host kernel can be used.

Because Charliecloud canmount host directories in the container,
users can choose whether to install their application inside the
container or read it from the host at runtime; the former is more
portable and the latter more flexible.

3.1.2 Build Docker image. (Privileged; user-managed.) Next, we
build the Docker image with ch-build, a convenience wrapper
around the privileged docker build command that manages HTTP
proxy variables and helps find the proper Dockerfile. The two ar-
guments are a tag for the image and the Docker context directory,
in this case the Charliecloud source code.

$ cd examples/mpihello
$ ch -build -t hello ../..
[...]
Successfully built 0f90d6ba020b

3.1.3 Examine image. (Privileged; user-managed; optional.) The
Docker image can be examined with standard Docker commands.
By default, the environment is different than what is provided by
Charliecloud, because no host directories are passed through and
the commands run as host root.

$ sudo docker run -it hello /bin/bash
cd /hello
ls hello*
hello hello.c
exit

3.1.4 Flatten image. (Privileged; user-managed.) In this step,
we convert the Docker image to a tarball; it is then a regular file
and thus easy to manage. ch-docker2tar wraps the privileged
docker export command.

$ ch -docker2tar hello /tmp
[...]
131M /tmp/hello.tar.gz

3.1.5 Distribute tarball. (Unprivileged; both user- and center-
managed.) Thus far, the workflow has taken place on user-owned
systems. Now, we must copy the tarball to the center-owned system
where it will be deployed, for example with scp or similar to a
staging area on the cluster front-end.

3.1.6 Unpack tarball. (Unprivileged; center-managed.) Charlie-
cloud provides a wrapper to tar xf that includes a few sanity and
convenience checks.

$ ch-tar2dir /tmp/hello.tar.gz /img/hello
/img/hello unpacked ok

Note that because tar is running unprivileged, potentially mali-
cious files such as devices cannot be created, even if they are in the
tarball.

Typical unpacking destinations include tmpfs, compute node
local storage, or a shared scratch filesystem, perhaps leveraging
the trend toward close-to-node storage such as burst buffers [26].
Unpacking can take place during job allocation time or as the first
step in the user’s job script.

3.1.7 Run user program. (Unprivileged; center-managed.) We
now run the actual user code. This is done with the ch-run C pro-
gram, which sets up the namespaces, bind-mounts host directo-
ries, changes the container root directory to the user image using
pivot_root(2) — a privileged system call made available to an
unprivileged process by the user namespace — and replaces itself
with the user command using execvp(2).

$ stat -L --format='%i' /proc/self/ns/user
4026531837
$ mpirun -n 4 ch-run /img/hello /hello/hello
0: init ok, 4 ranks , userns 4026532257
1: init ok, 4 ranks , userns 4026532268
2: init ok, 4 ranks , userns 4026532270
3: init ok, 4 ranks , userns 4026532272
0: send/receive ok
0: finalize ok

The stat command identifies the parent (host) user namespace
by reading the inode number of /proc/self/ns/user. The argu-
ments to ch-run are the directory containing the UDSS image and
the command to run within the container. In this example, mpirun
is running on the host, and the worker processes are in separate
containers.

Because this approach uses the host’s MPI infrastructure, it lever-
ages existing configuration work to scale job launch appropriately
for the resource.

3.2 Use existing HPC resources well (G2)
In this section, we outline potential drawbacks of introducing Char-
liecloud and how they are mitigated.

3.2.1 Security risks (D1). Charliecloud relies on two things to
maintain security. First, the Linux kernel to enforce access control
and other aspects of security. This is a well-accepted approach in
HPC; the extension — that user namespaces will ensure that guest
UIDs are an illusion — is relatively minor and exercises some new
paths through kernel code. User namespaces have been available

4

Charliecloud: Unprivileged containers for UDSS in HPC LA-UR 16-22370v4

FROM debian:jessie

OS packages needed to build OpenMPI.
RUN apt -get update && apt -get install -y g++ gcc make wget \

&& rm -rf /var/lib/apt/lists/*

Compile OpenMPI.
ENV VERSION 1.10.5
RUN wget -nv https ://www.open -mpi.org/software/ompi/v1.10/ downloads/openmpi -${VERSION }.tar.gz
RUN tar xf openmpi -${VERSION }.tar.gz
RUN cd openmpi -${VERSION} \

&& CFLAGS=-O3 CXXFLAGS=-O3 \
./ configure --prefix =/usr --sysconfdir =/mnt/0 \

--disable -pty -support --disable -mpi -cxx --disable -mpi -fortran \
&& make -j$(getconf _NPROCESSORS_ONLN) install

RUN rm -Rf openmpi -${VERSION }*

This example
COPY examples/mpihello /hello
WORKDIR /hello
RUN make clean && make

Figure 2: Dockerfile for the MPI hello world program. Starting with the latest version of Debian Jessie, this installs the nec-
essary compilers and support packages from the distribution repository and then compiles OpenMPI from source. The demo
program is then copied into the image from the Charliecloud source code and compiled.

since kernel version 3.8, released February 18, 2013 [3], and thus
have had four years to mature as of this writing.

For example, one cannot use Charliecloud to obtain a copy of
memory, despite being guest root:

$ ch -run /img/hello --uid 0 -- id -u
0
$ ch -run /img/hello --uid 0 -- whoami
root
$ ch -run /img/hello --uid 0 \

-- dd if=/dev/mem of=/tmp/pwned
[...] '/dev/mem ': Permission denied

Second, because all Charliecloud operations on center-owned
resources are done as the invoking, unprivileged user, there are
no opportunities for shenanigans such as creating device files or
setuid binaries. This is true despite the user-selected UID and GID
within the container; recall that the kernel’s user namespace code
maps these container IDs back to the user’s real host IDs before
performing access checks.

We have validated the security of Charliecloud, on the same
systems as described in §3.1 above, by attempting to:

• Use the standard chroot(2) escape [36] to change the guest
filesystem root.

• Read inaccessible files in /dev, /proc, and /sys.
• Bypass file and directory permissions (we enumerated 2,881
modes).

• Create device files on all mounted filesystems.
• Bind to privileged ports on all host IP addresses.
• Re-mount the host’s root filesystem.
• Change supplemental groups with setgroups(2).
• seteuid(2) to an unmapped UID.
• Send a signal to a process owned by a different user.

This test suite, which is included in the source code, identified no
privileged functionality that could be accessed.

3.2.2 Support burden (D2). Possibly-increased support require-
ments come from two sources and are modest. First, Charliecloud
itself must be supported. Second, users must avoid doing things
that are sub-optimal, counterproductive, or troublesome for others,
e.g., configuring MPI to use the management network instead of
the HSN. Such issues of course happen today; however, because
installing software becomes easier, they may be more common.

Aside from this, support for Charliecloud containers is scalable.
A center can choose to provide as little or as much support for
Charliecloud UDSS content as it likes. We expect a learning curve
here, because the UDSS is somewhat opaque, e.g., will staff need to
execute an image to diagnose its problems? In this regard, however,
Charliecloud is more accessible than other UDSS solutions because
its images are plain directories rather than filesystem image files.

On the other hand, Charliecloud’s customization tools may re-
duce support burdens as well. For example, center staff could provi-
sion a lighter-weight underlying cluster image if users bring their
own environments.

3.2.3 Missing functionality (D3). We identify three reasons a
UDSS might lose functionality:

(1) Devices and filesystems, such as GPUs and parallel scratch.
Charliecloud solves this by bind-mounting key host direc-
tories and files into the container, including /dev, along
with additional user-specified directories, thus inheriting the
host’s access credentials. This is illustrated in Figure 3.

(2) User-space drivers needed for hardware such as GPUs and
high-speed networks. The solution is to make the library files
available inside this guest. This can be done in multiple ways,

5

LA-UR 16-22370v4 Reid Priedhorsky and Tim Randles

$ ch -run -d /data /img/hello \
-- findmnt -R -o fstype ,target

FSTYPE TARGET
tmpfs /
tmpfs |-/run
tmpfs |-/mnt
btrfs | `-/mnt/0
tmpfs |-/home
ext4 | `-/home/aturing
devtmpfs |-/dev
ext4 |-/etc/passwd
ext4 |-/etc/group
ext4 |-/etc/hosts
proc |-/proc
sysfs |-/sys
tmpfs `-/tmp

Figure 3: Simplifiedmount tree for a Charliecloud container.
This illustrates the container’s root filesystem (/), various
tmpfs local to the container (/run, /mnt, /home), default bind
mounts from the host (/home/aturing, /dev, /etc/*, /proc,
/sys, /tmp), and a user-specified custom mount (host /data
is mounted at /mnt/0).

including installing distribution-provided drivers, center-
provided base images, and bind mounts. Frequently, driver
versions need not match what is installed on the host; for
example, OpenMPI works this way, because only the worker
processes inside the container communicate over the high-
speed network.

(3) Configuration specific to the host. One way to address this is
to bind-mount configuration directories into the guest, which
is why Charliecloud bind-mounts the user’s home directory
by default. Another is by using frameworks that read the
host configuration outside the container and pass it to the
guest workers, as mpirun does above. (Recall that because
the UTS and network namespaces are not used, network-
related settings such as host names and IP addresses are valid
for the guest as well.)

In short, Charliecloud’s simple approach and minimal isolation
mean that missing-functionality risks are low, and issues that do
arise can be straightforwardly solved.

3.2.4 Performance (D4). We expected Charliecloud containers
to impose minimal performance penalty, because the guest is using
the same kernel and devices as the host. In particular, we expect
minimal network overhead because we share the network names-
pace with the host, in contrast to prior work that showed substan-
tial costs for indirect network access [34]. These expectations are
consistent with prior work that showed minimal overhead in a
lightweight container setting with direct network access [40].

To evaluate this expectation, we ran two Intel®MPI Benchmarks
v2017 [11] under OpenMPI 1.10.5 on one of our Ethernet clusters
with 16 cores per node. The host OpenMPI build was configured by
one of our professional sysadmins, while the guest OpenMPI was
built naïvely as shown in Figure 2. The guest run used mpirun and
orted running on the host and one benchmark worker process per
container (as in the mpihello example above).

���

����

�����

�� �� ��� ���� ���� �����

�
��
��

���������

������������������
�����

�������������������
�����

������������������
�����

Figure 4: Parallel transfer benchmark sendrecv shows no sys-
tematic performance penalty at the 1 kB and 32 kB message
sizes. At the 1MB message size, the cost is roughly 5% once
the problem grows to multiple nodes; we suspect this is due
to tuning differences rather than containers.

��

��

��

��

��

��

��

��

��

�� �� �� ��� ��� ��� ���� ����

�
��
�
�
�
�

�
��
�
�

�
��
�
�
�
�
�
�
�
�
�
�
�
�
�

���������

������������������
�����

�������������������
�����

������������������
�����

Figure 5: Collective benchmark alltoall shows no systematic
performance penalty. (We suspect the glitches at 32 kB for 32
and 256 ranks, as well as 1MB/256, are due to network, not
container, issues.)

The results, as illustrated in Figures 4 and 5, supported our hy-
pothesis. In all but one test, there was no observable container
penalty. The last stabilized at ~5% cost; we suspect this modest
penalty is due to configuration or compiler and was not inherent
to the containerization.

3.3 Be very simple (G3)
Charliecloud is 500 lines of C code and 300 lines of shell script —
much less than the next-smallest alternative. It has minimal depen-
dencies: recent Linux kernel with headers, the C standard library,
and a POSIX shell and utilities. There are no daemons, whether
privileged, trusted, or otherwise; in particular, there is no container
supervisor process, and there is no cache, persistence, or configura-
tion files. Charliecloud requires no network infrastructure such as
bridges or routing table modifications. Images can be manipulated
with standard commands or any general data staging service. This
simplicity makes Charliecloud easier to understand, debug, deploy,
and support.

6

Charliecloud: Unprivileged containers for UDSS in HPC LA-UR 16-22370v4

4 RELATEDWORK
This section outlines the context that Charliecloud arises from
and how it advances the state of the art. Table 1 summarizes this
comparison against key alternatives.

4.1 Admin-managed customization
Customized software, i.e., not provided by the base OS, is a long-
standing need in HPC. Traditionally, this has been fulfilled by sys-
tem administrators installing various software upon user request;
users then select at run-time which options they prefer. Here, we
briefly review two of the many options for accomplishing this.

Environment modules [8, e.g.] are a widely installed class of
tools. Administrators install applications and libraries into globally
accessible directories and write modulefiles to manage the environ-
ment, e.g., by setting variables such as PATH and LD_LIBRARY_PATH.
Users then activate and deactivate specific environments using the
command line tool module, either interactively or in job scripts.

With CHOS13 [30], created at NERSC and in production there
since 2004, administrators install a complete Linux distribution
into a directory. The user-facing tools then activate this OS using
chroot(2) and a kernel module to manage “magic symlinks” into
CHOS directories that change based on a process’ PID.

These approaches have advantages; they do bring users critical
flexibility, and software is installed by experts. On the other hand,
because sysadmins do the installation and maintenance work, only
software that has high demand justifies this effort; unusual software
needs, whether innovative or crackpot, are unmet. This can create
a chicken-and-egg problem: a package has low demand because it’s
unavailable and it’s unavailable because there is low demand.

4.2 Self-compile
The traditional method for users to take care of themselves is what
we call self-compile: download, compile, and install software into a
home directory or other user area.

This is available almost everywhere already; it consumes min-
imal sysadmin effort (help users do it, and provide infrastructure
such as compilers and base libraries); by definition, it does not
employ any privileged operations anywhere; and the resulting soft-
ware has direct access to all center resources.

However, it has disadvantages: it is tedious, error-prone, and
hard to update; the software can conflict with the OS, e.g., if a
different version of a library is installed; dependencies are hard to
manage; and builds generally happen in the same environment as
deployment, which is troublesome if dependencies like internet
access are not available.

In principle, users can self-compile arbitrary software. In practice,
this is not feasible due to the level of effort.

4.3 Virtual machines
A virtual machine (VM) is a program that emulates a physical com-
puter [39]. Thus, one can install an operating system and applica-
tions into this emulator, rather than on a physical computer. VMs
can be implemented completely in software, at high cost in perfor-
mance, or a kernel-level hypervisor can use CPU features to execute

13https://github.com/NERSC/chos

most instructions in hardware. A small subset, such as those that
access devices, are trapped for software emulation.

This flexibility has attracted interest from the HPC commu-
nity [12], as well as vendors such as Amazon who want to host
HPC workloads in their virtualized data centers [1].

Applied to the UDSS problem, a user installs whatever guest OS
they wish inside the virtual machines. Because VMs provide strong
isolation, it is generally safe to let users have unlimited control of
the guest, including root access.

This flexibility and isolation yields a strong advantage: the user
can install any kernel, or even a different operating system, and
adjust most OS and kernel settings. Also, because the VM itself
runs as an normal, unprivileged user (ideally the invoking user), no
root or trusted operations are needed.

On the other hand, virtualization brings disadvantages as well.
First, VMs must be provisioned with a complete OS, just like a
physical host; this duplicates host functionality such as the kernel
and system daemons. Standard, reproducible provisioning tools
do exist but are targeted to expert sysadmins and designed to be
featureful, not easy to use.

Second, performance and complexity can be an issue. While
compute-heavy code generally performs well due to hardware vir-
tualization, many resources require indirection to be available to
the guest. For example, a guest has its own Ethernet devices and IP
addresses, so network infrastructure such as bridges and routing ta-
bles is needed. Filesystems can be made available with tools such as
VirtFS [15], and SR-IOV lets PCIe devices split off non-configurable
“virtual functions” that can be safely offered to guests [27]. In gen-
eral, these indirections are mature and performant when used by
industry, but HPC-specific functionality is less so.

Another option is PCI passthrough, where devices are removed
from the host and given exclusively to the guest; this solves indi-
rection problems but brings new ones, since the guest is no longer
isolated. This trades performance against flexibility and security.
For example, unsanitized GPU memory has led to information leak-
age [2], opportunities to load malicious firmware may exist, and
allowing arbitrary user-specified packets on the network is unsafe.

In short, virtualization is a heavy-weight solution. If the UDSS is
incompatible with the host kernel or its settings, then it should be
considered; if not, then simpler solutions are more desirable. The
latter is the space targeted by Charliecloud.

4.4 chroot(2)
chroot(2) is a traditional UNIX system call that changes a process’
filesystem root [19]. It can be used for UDSS by installing a Linux
distribution into a directory and then chroot(2)ing into that direc-
tory. If the host’s kernel is compatible with the guest distribution,
then this is a simple base upon which to implement an UDSS tool.

This approach has the advantage that host resources are straight-
forward to provide directly, because the guest is using the same
kernel and, with appropriate bind-mounts, has access to the same
devices and filesystems.

On the other hand, chroot(2) is a privileged system call, so
escalation, privilege dropping [4], and the attack surface must be
managed carefully. Also, chroot(2) has a history of ill-advised
attempts to use it as a security boundary — a role it was never

7

https://github.com/NERSC/chos

LA-UR 16-22370v4 Reid Priedhorsky and Tim Randles

self-
compile

virtual
machine Shifter Singularity Docker rkt NsJail Charliecloud

Attribute hypervisor chroot priv. ns. userns* userns* userns userns

Workflow (G1)

User-defined kernel and settings · ✓ · · · · · ·

Use package managers, e.g. apt-get, yum · ✓ ✓ ✓ ✓ ✓ ✓ ✓

No conflicts with host software · ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry-standard image build · · ✓ · ✓ ✓ · ✓
Reproducible image build · · ✓ ✓ ✓ ✓ · ✓

Resources (G2)

No privileged or trusted daemons ✓ ✓ · ✓ · ✓ ✓ ✓
No additional network infrastructure ✓ · ✓ ✓ · ✓ ✓ ✓
Network filesystems see no UDSS metadata · ✓ ✓ ✓ ✓ ✓ ✓ ✓

Direct device access ✓ · ✓ ✓ ✓ ✓ ✓ ✓
Direct filesystem access ✓ · ✓ ✓ ✓ ✓ ✓ ✓
Direct high-speed network access ✓ · ✓ ✓ ✓ ✓ ✓ ✓

Simplicity (G3)

Implementation language n/a varies C, Python,
C++, sh

C, sh,
Python Go Go C C, sh

Lines of code n/a varies 19,000 11,000 133,000 52,000 4,000 800

No resource manager-specific code ✓ ✓ · ✓ ✓ ✓ ✓ ✓
No communication framework-specific code ✓ ✓ ✓ · ✓ · ✓ ✓

No root operations on center resources ✓ · · · · ✓ ✓ ✓
No guest supervisor process ✓ · · · · ✓ · ✓
No cache, configuration, or other state ✓ · · · · · ✓ ✓

Table 1: Summary comparison of selected UDSS implementations on attributes driven by our design goals; the sense of boolean
attributes is that a checkmark reflects themore desirable value. An asterisk indicates that the implementation can use unpriv-
ileged namespaces, but this is not the standard mode. Charliecloud compares favorably on all attributes except the ability to
select a UDSS-specific kernel and kernel settings, for which a virtualmachine is needed. Information in this table was gathered
from publications [14], documentation [5, 7, 25, 37], and source code (Shifter commit 9d296ce, Singularity 2.2.1, Docker 17.03.1-
ce, rkt 1.25.0, NsJail commit 730991b, Charliecloud commit 9c03f44). We counted lines with wc, briefly reviewing each imple-
mentation’s code to count only feature modules, not support code such as tests or the build system.

intended for, as by design it is trivial to escape a chroot [36] —
which can make its politics troublesome.

Shifter14 [14] is a chroot(2)-based effort from NERSC to make
UDSS available to HPC users. While still new, Shifter has success-
fully run production codes [13].

Shifter uses Docker to offer a standard, repeatable image building
workflow. Once an image is built, the user submits it to an unprivi-
leged but trusted image gateway, which injects configuration and
binaries, flattens it to an ext4 filesystem image, and copies this
image to a parallel filesystem visible from compute nodes. This is a
key innovation, as it insulates the network filesystem from image
metadata traffic.

The UDSS image is mounted and activated by a setuid-root exe-
cutable. In its recommended andmost scalable configuration, Shifter

14https://github.com/NERSC/shifter

uses resource manager plugins set up the environment and invoke
the activation executable. The UDSS is then available transparently
as soon as the user gains control of the job. This configuration also
adds a setuid-root SSH daemon into the image.

To our knowledge, Shifter is the first HPC-targeted UDSS solu-
tion with a good workflow and direct resource access. However, it
relies on trusted and privileged operations, its resource manager in-
tegration increases complexity, and it requires servers and daemons
for the image gateway.

4.5 Linux containers
Containers are a kernel feature. However, user-space wrappers
provide necessary convenience and usability. In this section, we
outline the major existing implementations.

8

https://github.com/NERSC/shifter

Charliecloud: Unprivileged containers for UDSS in HPC LA-UR 16-22370v4

4.5.1 Basic tools. Simple command-line container tools that
wrap the namespace system calls, unshare(1) and nsenter(1), are
included in the util-linux package,15 which is installed by default on
most Linux distributions. A similar wrapper is available in Google’s
NsJail,16 which also includes network forwarding, inetd-style pro-
cess spawning, and seccomp syscall filtering. Finally, systemd in-
cludes a namespaces wrapper systemd-nspawn [38].

In principle, one of these tools could provide the basis for Char-
liecloud. However, this would add dependencies and complexity
for little gain, because it would require coordinating the system
call dance via indirection through another tool rather than simply
making the system calls directly.

4.5.2 Tools used in industry. Docker is perhaps the most well-
known container implementation. It is an open source product17
supported by Docker, Inc., with several advantages. Most impor-
tantly, the Dockerfile image specification language [6] makes it
straightforward to build reproducible images, and the Docker Hub
website enables sharing and composing images. Accordingly, this
workflow is becoming an industry standard. Further, Docker can
be configured for direct access to host resources via namespace
selection and bind mounts. It supports user namespaces, but this is
not the standard mode of operation [7].

Docker runs containers with runC,18 which can also be used
independently. The motivation for spinning off an additional open-
source product is to create libraries and tools that support an open
“universal container runtime” [10] to standardize high-quality con-
tainer workflows and image formats. This has developed into a
multi-vendor Open Container Initiative (OCI) [29].

The key disadvantages of Docker/runC are that it is large and
complex, it depends on privileged daemons on both admin- and
user-facing nodes (even with user namespaces), and it is written
in Go, a language that HPC centers often lack expertise in. Criti-
cally, however, Docker’s security culture in a poor fit for HPC; for
example, access to any docker subcommand is equivalent to full
root access by design [32].

A second project targeting OCI compliance is rkt,19 an open-
source Go project backed by CoreOS, Inc. [5]. rkt avoids the need
for trusted daemons and optionally uses the user namespace, but it
is still a large project with much functionality not needed for HPC.
It can run Docker images and also provides a competing image
specification language.

Finally, LXC is an older, though still active container project.20
It is a library (liblxc) and tools (LXD) to manage containers and
images. It fills a similar role but lacks a Dockerfile-like reproducible
image building workflow.

We decided to use the Dockerfile/Docker Hub image workflow,
for the reasons above, but create our own container runtime for
Charliecloud. Existing runtimes do not meet our design goals: they
are too complex, pose unacceptable security risks, and are targeted
for web applications, not HPC.

15https://github.com/karelzak/util-linux
16https://github.com/google/nsjail
17https://github.com/docker/docker
18https://runc.io
19https://coreos.com/rkt
20https://linuxcontainers.org

4.5.3 HPC-focused tools. To our knowledge, only one other
HPC-focused container implementation exists.

Singularity21 is a Lawrence Berkeley National Laboratory project
targeting single-file container images that can be run on any variety
of Linux [25]. Images are specified with a custom Dockerfile-like
language, using the host operating system to bootstrap an ext4
filesystem image22 and then programs within the image to finish
populating it. Direct host resources are available because Singularity
uses only the mount and PID namespaces.

Because Singularity does not use the user namespace, it can
run on older Linux distributions but requires privileged system
calls. Also, Singularity contains code to integrate with OpenMPI 2.1.
These differences highlight the dissimilar design goals of Singularity
and Charliecloud.

5 IMPLICATIONS AND FUTUREWORK
This paper makes two key contributions. First, we propose clear
user needs, risks, and design goals for UDSS in HPC. Second, to
our knowledge, no HPC container solution that meets these goals
has been previously proposed. We offer Charliecloud, an open-
source implementation that does. Charliecloud provides a standard,
reproducible, and unprivileged container workflow (G1), runs on
existing HPC hardware and software (G2), and is extremely simple
at 800 lines of code (G3). We argue that useful UDSS containers for
HPC are easy, not hard, and do not require extensive infrastructure,
lots of isolation, or a large software development effort.

We have recently deployed Charliecloud in production and look
forward to reporting on its real-world use for real science. Addi-
tional future work includes exploring OCI compliance and bench-
marking real application performance.

ACKNOWLEDGEMENTS
This work was supported in part by the U.S. Department of Energy
National Nuclear Security Administration under contract DE-AC52-
06NA25396, via the LANL Institutional Computing Program and the
Advanced Simulation and Computing Program. One of Doug Jacob-
sen’s Shifter presentations [13] jump-started our reasoning about
the motivations for UDSS. Jacobsen improved our understanding
of Shifter by answering our questions, as did Gregory Kurtzer for
Singularity; in both cases, any remaining errors are ours alone.

REFERENCES
[1] Amazon Web Services, Inc. 2015. An introduction to high performance computing

on AWS. White paper. AmazonWeb Services, Inc. https://d0.awsstatic.com/
whitepapers/Intro_to_HPC_on_AWS.pdf

[2] Evan Andersen. 2016. How Nvidia breaks Chrome incognito. (Jan.
2016). https://charliehorse55.wordpress.com/2016/01/09/how-nvidia-
breaks-chrome-incognito/

[3] Diego Calleja. 2013. Linux 3.8. (April 2013). http://kernelnewbies.org/
Linux_3.8

[4] Hao Chen, David Wagner, and Drew Dean. 2002. Setuid Demystified. In USENIX
Security Symposium. http://crypto.stanford.edu/cs155/papers/setuid-
usenix02.pdf

[5] CoreOS Inc. 2017. rkt 1.25.0 documentation. (2017). https://coreos.com/rkt/
docs/1.25.0/

[6] Docker, Inc. 2016. Dockerfile reference. Documentation. Docker, Inc. https:
//docs.docker.com/engine/reference/builder/

21http://singularity.lbl.gov
22Note that use of filesystem images expands the attack surface; for example, a recent
kernel vulnerability involved crafted ext4 images [31].

9

https://github.com/karelzak/util-linux
https://github.com/google/nsjail
https://github.com/docker/docker
https://runc.io
https://coreos.com/rkt
https://linuxcontainers.org
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf
https://charliehorse55.wordpress.com/2016/01/09/how-nvidia-breaks-chrome-incognito/
https://charliehorse55.wordpress.com/2016/01/09/how-nvidia-breaks-chrome-incognito/
http://kernelnewbies.org/Linux_3.8
http://kernelnewbies.org/Linux_3.8
http://crypto.stanford.edu/cs155/papers/setuid-usenix02.pdf
http://crypto.stanford.edu/cs155/papers/setuid-usenix02.pdf
https://coreos.com/rkt/docs/1.25.0/
https://coreos.com/rkt/docs/1.25.0/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
http://singularity.lbl.gov

LA-UR 16-22370v4 Reid Priedhorsky and Tim Randles

[7] Docker Inc. 2017. Docker Docs. Documentation. Docker, Inc. https://docs.
docker.com

[8] John L. Furlani and Peter W. Osel. 1996. Abstract yourself with modules. In
USENIX System Administration Conference. http://modules.sourceforge.
net/docs/absmod.pdf

[9] Tyler Hicks. 2017. CVE-2017-7184: kernel: Local privilege escalation in XFRM
framework. (March 2017). http://seclists.org/oss-sec/2017/q1/689

[10] Solomon Hykes. 2015. Introducing runC: A lightweight universal container
runtime. (June 2015). https://blog.docker.com/2015/06/runc

[11] Intel Corporation 2016. Intel® MPI benchmarks: User guide and methodology
description. Documentation. Intel Corporation. https://software.intel.com/
sites/default/files/managed/66/e8/IMB_Users_Guide.pdf

[12] Keith R. Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon, Shreyas
Cholia, John Shalf, Harvey J. Wasserman, and Nicholas J. Wright. 2010. Perfor-
mance analysis of high performance computing applications on the Amazon
Web Services cloud. In IEEE CloudCom. https://doi.org/10.1109/CloudCom.
2010.69

[13] Doug Jacobsen and Shane Canon. 2015. Contain this, unleashing Docker
for HPC. (May 2015). http://www.nersc.gov/assets/Uploads/nersc-
brownbag-docker-jacobsen-canon.pdf

[14] Douglas M. Jacobsen and Richard Shane Canon. 2015. Contain this, unleash-
ing Docker for HPC. In Cray User Group. http://www.nersc.gov/assets/
Uploads/cug2015udi.pdf

[15] Venkateswararao Jujjuri, Eric Van Hensbergen, Anthony Liguori, and Badari
Pulavarty. 2010. VirtFS—a virtualization aware file system pass-through. In
Ottawa Linux Symposium (OLS). https://www.kernel.org/doc/ols/2010/
ols2010-pages-109-120.pdf

[16] Michael Kerrisk. 2013. Namespaces in operation, part 1: Namespaces overview.
Linux Weekly News (Jan. 2013). https://lwn.net/Articles/531114/

[17] Michael Kerrisk. 2013. Namespaces in operation, part 5: User namespaces. Linux
Weekly News (Feb. 2013). https://lwn.net/Articles/532593/

[18] Michael Kerrisk et al. 2015. pid_namespaces(7). Man page. http://man7.org/
linux/man-pages/man7/pid_namespaces.7.html

[19] Michael Kerrisk et al. 2016. chroot(2). Man page. http://man7.org/linux/man-
pages/man2/chroot.2.html

[20] Michael Kerrisk et al. 2016. clone(2). Man page. http://man7.org/linux/man-
pages/man2/clone.2.html

[21] Michael Kerrisk et al. 2016. namespaces(7). Man page. http://man7.org/linux/
man-pages/man7/namespaces.7.html

[22] Michael Kerrisk et al. 2016. setns(2). Man page. http://man7.org/linux/man-
pages/man2/setns.2.html

[23] Michael Kerrisk et al. 2016. unshare(2). Man page. http://man7.org/linux/
man-pages/man2/unshare.2.html

[24] Michael Kerrisk et al. 2016. user_namespaces(7). Man page. http://man7.org/
linux/man-pages/man7/user_namespaces.7.html

[25] Gregory M. Kurtzer. 2016. Singularity. (July 2016). http://singularity.lbl.
gov/

[26] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary
Grider, Adam Crume, and Carlos Maltzahn. 2012. On the role of burst buffers
in leadership-class storage systems. In Mass Storage Systems and Technologies
(MSST). https://doi.org/10.1109/MSST.2012.6232369

[27] Scott Lowe. 2009. What is SR-IOV? (Dec. 2009). http://blog.scottlowe.org/
2009/12/02/what-is-sr-iov/

[28] Doug McIlroy, E. N. Pinson, and B. A. Tague. 1978. UNIX time-sharing system:
Foreword. Bell System Technical Journal 67, 6 (1978).

[29] Open Container Initiative 2016. About. Mission statement. Open Container
Initiative. https://www.opencontainers.org/about

[30] Larry Pezzaglia. 2012. CHOS in production. (April 2012). https://www.nersc.
gov/assets/pubs_presos/chos.pdf

[31] Red Hat Inc. 2016. CVE-2016-10208. (Nov. 2016). https://access.redhat.
com/security/cve/cve-2016-10208

[32] Reventlov. 2015. Using the docker command to root the host (totally not a
security issue). (April 2015). http://reventlov.com/advisories/using-the-
docker-command-to-root-the-host

[33] Rami Rosen. 2016. Namespaces and cgroups, the basis of Linux containers.
(Feb. 2016). http://www.netdevconf.org/1.1/proceedings/slides/rosen-
namespaces-cgroups-lxc.pdf

[34] Cristian Ruiz, Emmanuel Jeanvoine, and Lucas Nussbaum. 2015. Performance
evaluation of containers for HPC. In Euro-Par 2015: Parallel Processing Workshops.
https://doi.org/10.1007/978-3-319-27308-2_65

[35] Jerome H. Saltzer. 1974. Protection and the control of information sharing in
Multics. CACM 17, 7 (July 1974). https://doi.org/10.1145/361011.361067

[36] Simes. 2002. How to break out of a chroot() jail. (May 2002).
https://web.archive.org/web/20160209154009/http://www.bpfh.net/
simes/computing/chroot-break.html

[37] Robert Swiecki. 2016. NsJail. (Dec. 2016). https://google.github.io/nsjail/
[38] systemd contributors. 2017. systemd-nspawn. Man page. https://www.

freedesktop.org/software/systemd/man/systemd-nspawn.html
[39] Wikipedia editors. 2016. Virtualization. (Feb. 2016). https://en.wikipedia.

org/w/index.php?title=Virtualization&oldid=704408822
[40] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timoteo

Lange, and Cesar A. F. De Rose. 2013. Performance evaluation of container-
based virtualization for high performance computing environments. In Euromicro
Parallel, Distributed, and Network-Based Processing. https://doi.org/10.1109/
PDP.2013.41

10

https://docs.docker.com
https://docs.docker.com
http://modules.sourceforge.net/docs/absmod.pdf
http://modules.sourceforge.net/docs/absmod.pdf
http://seclists.org/oss-sec/2017/q1/689
https://blog.docker.com/2015/06/runc
https://software.intel.com/sites/default/files/managed/66/e8/IMB_Users_Guide.pdf
https://software.intel.com/sites/default/files/managed/66/e8/IMB_Users_Guide.pdf
https://doi.org/10.1109/CloudCom.2010.69
https://doi.org/10.1109/CloudCom.2010.69
http://www.nersc.gov/assets/Uploads/nersc-brownbag-docker-jacobsen-canon.pdf
http://www.nersc.gov/assets/Uploads/nersc-brownbag-docker-jacobsen-canon.pdf
http://www.nersc.gov/assets/Uploads/cug2015udi.pdf
http://www.nersc.gov/assets/Uploads/cug2015udi.pdf
https://www.kernel.org/doc/ols/2010/ols2010-pages-109-120.pdf
https://www.kernel.org/doc/ols/2010/ols2010-pages-109-120.pdf
https://lwn.net/Articles/531114/
https://lwn.net/Articles/532593/
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man2/setns.2.html
http://man7.org/linux/man-pages/man2/setns.2.html
http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man2/unshare.2.html
http://man7.org/linux/man-pages/man7/user_namespaces.7.html
http://man7.org/linux/man-pages/man7/user_namespaces.7.html
http://singularity.lbl.gov/
http://singularity.lbl.gov/
https://doi.org/10.1109/MSST.2012.6232369
http://blog.scottlowe.org/2009/12/02/what-is-sr-iov/
http://blog.scottlowe.org/2009/12/02/what-is-sr-iov/
https://www.opencontainers.org/about
https://www.nersc.gov/assets/pubs_presos/chos.pdf
https://www.nersc.gov/assets/pubs_presos/chos.pdf
https://access.redhat.com/security/cve/cve-2016-10208
https://access.redhat.com/security/cve/cve-2016-10208
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
http://reventlov.com/advisories/using-the-docker-command-to-root-the-host
http://www.netdevconf.org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf
http://www.netdevconf.org/1.1/proceedings/slides/rosen-namespaces-cgroups-lxc.pdf
https://doi.org/10.1007/978-3-319-27308-2_65
https://doi.org/10.1145/361011.361067
https://web.archive.org/web/20160209154009/http://www.bpfh.net/simes/computing/chroot-break.html
https://web.archive.org/web/20160209154009/http://www.bpfh.net/simes/computing/chroot-break.html
https://google.github.io/nsjail/
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://en.wikipedia.org/w/index.php?title=Virtualization&oldid=704408822
https://en.wikipedia.org/w/index.php?title=Virtualization&oldid=704408822
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/PDP.2013.41

	Abstract
	1 Introduction
	2 Linux containers overview
	2.1 Privileged Linux namespaces
	2.2 Unprivileged namespaces
	2.3 cgroups
	2.4 Vocabulary
	2.5 Charliecloud containers

	3 Charliecloud and the design goals
	3.1 Standard, reproducible workflow (G1)
	3.2 Use existing HPC resources well (G2)
	3.3 Be very simple (G3)

	4 Related work
	4.1 Admin-managed customization
	4.2 Self-compile
	4.3 Virtual machines
	4.4 chroot(2)
	4.5 Linux containers

	5 Implications and future work
	References

